Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization

نویسندگان

  • Amir Daneshmand
  • Francisco Facchinei
  • Vyacheslav Kungurtsev
  • Gesualdo Scutari
چکیده

We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a nonsmooth (possibly nonseparable), convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. The main contribution of this work is a novel parallel, hybrid random/deterministic decomposition scheme wherein, at each iteration, a subset of (block) variables is updated at the same time by minimizing local convex approximations of the original nonconvex function. To tackle with huge-scale problems, the (block) variables to be updated are chosen according to a mixed random and deterministic procedure, which captures the advantages of both pure deterministic and random update-based schemes. Almost sure convergence of the proposed scheme is established. Numerical results show that on huge-scale problems the proposed hybrid random/deterministic algorithm outperforms both random and deterministic schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYBRID ARTIFICIAL PHYSICS OPTIMIZATION AND BIG BANG-BIG CRUNCH ALGORITHM (HPBA) FOR SIZE OPTIMIZATION OF TRUSS STRUCTURES

Over the past decades, several techniques have been employed to improve the applicability of the metaheuristic optimization methods. One of the solutions for improving the capability of metaheuristic methods is the hybrid of algorithms. This study proposes a new optimization algorithm called HPBA which is based on the hybrid of two optimization algorithms; Big Bang-Big Crunch (BB-BC) inspired b...

متن کامل

Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms

Metal oxide surge arrester accurate modeling and its parameter identification are very important for insulation coordination studies, arrester allocation and system reliability. Since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters´ dynamic behavior. In this paper, Big Bang – Big Crunch and Hybrid Big Bang – Big Cr...

متن کامل

Design of process operations using hybrid dynamic optimization

Accurate nonlinear dynamic models of process operations such as start-ups, shut-downs, and complex changeovers include state dependent events that trigger discrete changes to the describing equations, and are best analyzed within a hybrid systems framework. The automated design of an optimal process operation can thus be formulated as a dynamic optimization problem with a hybrid system embedded...

متن کامل

Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part I: Model and Convergence

We propose a novel asynchronous parallel algorithmic framework for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed framework hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of modern computational architectures and asynchro...

متن کامل

A Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network

Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1407.4504  شماره 

صفحات  -

تاریخ انتشار 2014